A remark on the connectivity of $\Gamma(M)$

Rezvan Varmazyar
Department of Mathematics
Khoy Branch, Islamic Azad University, Khoy 58168-44799, Iran
varmazyar@iaukhoy.ac.ir

Abstract

Let R be a commutative ring and M be an R-module. The zero-divisor graph of M is defined as the graph $\Gamma(M)$ with the vertex set $Z\left({ }_{R} M\right)=\left\{x \in M \mid\left(x:_{R} M\right)\left(y:_{R} M\right) M=0,0 \neq y \in M\right\}$ and two distinct vertices x, y of M are adjacent if and only if $\left(x:_{R} M\right)\left(y:_{R} M\right) M=0$. In this paper, the connectivity of $\Gamma(M)$ is investigated.

KEYWORDS: zero-divisor graph, minimum degree, connectivity, vertex-cut, multiplication module.

1 INTRODUCTION

Let R be a commutative ring with identity and $\mathrm{Z}(\mathrm{R})$ be its set of zero-divisors. The zero-divisor graph of the ring R, denoted by $\Gamma(R)$, is the simple graph associated to R such that its vertex set consists of all its nonzero zero divisors and that two distinct vertices x, y are joined by an edge if and only if $x y=0$. This concept is due to Beck [5], who let all the elements of R be vertices of $\Gamma(R)$ and was mainly interested in colourings. For the information about the zero-divisor graphs of commutative rings, see [2-3], [10-11] and [13]. Recently, assigning a graph to a module has received a good deal of attention from many authors, see for instance [6-7].

Let M be an R-module. Recall that an element x of M is called a zero-divisor, if $\mathrm{x}=0$ or $\left(x:_{R} M\right)\left(y:_{R} M\right) M=0$ for some nonzero y of M with $0 \neq\left(y:_{R} M\right) \subset R$. The set of zero-divisors of M is denoted by $Z\left({ }_{R} M\right)$. We associate (simple) graph $\Gamma(M)$ to M with vertices $Z\left({ }_{R} M\right) \backslash\{0\}$, and two distinct vertices x and y are adjacent if and only if $\left(x:_{R} M\right)\left(y:_{R} M\right) M=0$.
A graph is said to be connected if for each pair of distinct vertices x and y , there is a finite sequence of distinct vertices $x=a_{1}, \ldots, a_{n}=y$ such that each pair $\left\{a_{i}, a_{i+1}\right\}$ is an edge. Such a sequence is said to be a path, and the distance, $\mathrm{d}(\mathrm{x} ; \mathrm{y})$, between vertices x and y is the length of the shortest path connecting them $(\mathrm{d}(\mathrm{x}, \mathrm{y})=1$ if there is no such path). The diameter of a connected graph G is
$\operatorname{diam}(\mathrm{G})=\sup \{\mathrm{d}(\mathrm{x}, \mathrm{y}) ; \mathrm{x}$ and y are distinct vertices of G$\}$.
A connected graph with more than one vertex has diameter 1 if and only if it is complete, that is, there exists an edge between each pair of distinct vertices. We denote the complete graph with n vertices by K_{n}. Also, the minimum degree of G , denoted by $\delta(G)$, is the minimum degree of its vertices. The set of vertices of G is denoted by $\mathrm{V}(\mathrm{G})$.
In [9] it was proved that $\Gamma(M)$ is connected. The concept of the connectivity of a zero-divisor graph can be found in [1]. The connectivity of a graph G, denoted by $\kappa(\mathrm{G})$, is the smallest number of vertices in G whose deletion leaves either a disconnected graph or K_{1}. A vertex-cut is a subset $U \subseteq V(G)$ such that

G-U is disconnected. Therefore, $\kappa(G)$ is the size of smallest set U such that U is a vertex-cut of G or G U has only one vertex. For any graph $\mathrm{G}, \kappa(G) \leq \delta(G)$. In this paper we extend the concepts of the connectivity to the zero-divisor graph $\Gamma(\mathrm{M})$.

It was shown in many paper that $\Gamma(R)$ is a connected graph with diameter less than or equal to 3 .
Theorem 1.1. Let R be a commutative ring. Then $\Gamma(R)$ is finite if and only if R is finite or an integral domain.

Proof: See Theorem 2.2 of [2].
In the following results the connectivity of $\Gamma(R)$ is investigated.
Theorem 1.2. Let R be a finite local ring then $\kappa(\Gamma(R))=\delta(\Gamma(R))$.
Proof: see Theorem 3.1 of [1].
The following proposition gives a bound for $\kappa(\Gamma(R))$.
Proposition 1.3. Let R be a finite ring. Then $\kappa(\Gamma(R)) \geq\left(\frac{\delta(\Gamma(R))}{2}\right)^{\frac{1}{3}}-\frac{1}{\sqrt{3}}$.
Proof: See Proposition 3.8 of [1].
Theorem 1.4. Let R be a commutative ring and p be a prime number. Then the connectivity of $\Gamma\left(\mathrm{Z}_{p^{2}}\right)$ is $\mathrm{p}-2$.

Proof: see Theorem 3.1 of [11].
Theorem 1.5. Let R be a commutative ring and let p, q be a prime numbers. The connectivity of $\Gamma\left(\mathrm{Z}_{p^{m} q^{n}}\right)$ is $\min \{\mathrm{p}-1, \mathrm{q}-1\}$.

Proof: see Theorem 3.4 of [11].

2 CONCLUSION

Recall that an R-module M is multiplication if $\mathrm{N}=(\mathrm{N}: \mathrm{M}) \mathrm{M}$ for every submodule N of M . Clearly every ring is a multiplication module over itself and every cyclic R-module is a multiplication R-module. For more information about multiplication module see [4], [7], and [12].

Let $M=\mathrm{Z}_{n}$ and $\mathrm{R}=\mathrm{Z}$. It is clear that Z_{n} is a multiplication Z -module.
Theorem 2.1. Assume that n is a positive integer greater than 1 and n is not a prime number. Then the zero-divisor graph $\Gamma\left(\mathrm{Z}_{n}\right)$ is simple if and only if n is square-free.

Proof: seeTheorem 5.1 of [8].
Corollary 2.2. The lattice diagram of the group $\left(\mathrm{Z}_{n},+\right)$ is obtained from the zero-divisor graph of the Z module Z_{n}, where $n \geq 2$.
Proof: See Corollary 5.4 of [8].
Theorem 2.52. Let M be an R -module. Then $\Gamma(M)$ is a connected graph and

$$
\operatorname{diam}(\Gamma(M)) \leq 3
$$

Proof: See Theorem 2.5 of [8].
Theorem 2.2. Let p be a prime number and $M=\mathrm{Z}_{p^{n}}$. If $\mathrm{n} \geq 3$ then $\kappa(\Gamma(\mathrm{M}))=\mathrm{p}-1$.
Proof: It is clear that $\mathrm{Z}(\mathrm{M})=\mathrm{Rp}$ and $0=R p^{n} \subset R p^{n-1} \subset \ldots \subset R p^{2} \subset R p$. By the proof of Theorem 4.1[9], we get $\kappa(\Gamma(M))=\mathrm{p}-1$.

Theorem 2.3. Let $p_{1} \prec p_{2} \prec \ldots \prec p_{n}$ be distinct prime numbers and $M=\mathrm{Z}_{p_{1} \ldots p_{n}}$. Then

$$
\kappa(\Gamma(M))=p_{1}-1 .
$$

Proof: If $\mathrm{n}=2$ then by the proof of Theorem $4.2[9], \Gamma(\mathrm{M})$ is a complete bipartite graph. So we get the result.
For $n \geq 3, \Gamma(\mathrm{M})$ has $\left(p_{1}-1\right)\left(p_{2}-1\right) \ldots\left(p_{n}-1\right)$ complete subgraphs of order n. By the proof of same theorem, we get $\operatorname{deg}\left(p_{1}\right)=p_{1}-1=\delta(\Gamma(M))$, and there is no vertex-cut of cardinality less than $\delta(\Gamma(M))$, as needed.

Theorem 2.4. Let $p_{1} \prec p_{2} \prec \ldots \prec p_{n}$ be distinct prime numbers and Let $M=\mathrm{Z}_{p_{1}} \oplus \ldots \oplus \mathrm{Z}_{p_{n}}$. Then $\kappa(\Gamma(M))=p_{1}-1$.

Proof: Let $a_{i} \notin Z\left(\mathrm{Z}_{p_{n}}\right)$. Then $\operatorname{deg}\left(0, a_{2}, a_{3}, \ldots, a_{n}\right)=p_{1}-1=\delta(\Gamma(M))$, and there is no vertexcut of cardinality less than $\delta(\Gamma(M))$ in this graph. Hence the result is hold.

REFERENCES

[1] R. Akhtar, L. Lee, Connectivity of the zero-divisor graph for finit rings, preprint.
[2] D.F. Anderson, and P. S. Livingston, The zero-divisor graph of a commutativering, J. Algebra, 217(2) (1999), 434-447.
[3] D. F. Anderson,On the diameter and girth of a zero-divisor graph, II, HoustonJ. Math., 34(2) (2008), 361-371. press.
[4] A. Barnard, Multiplication modules, J. Algebra71(1981),174-178.
[5] I. Beck, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208-226.
[6] M. Behboodi, Zero divisor graphs for modules over commutative rings, J. Commut. Algebra 4 (2012), no. 2, 175-197.
[7] Z. El-Bast, and P. F. Smith, Multiplication modules, Comm.Algebra16(1988),755-779.
[8] S. C. Lee and R. Varmazyar, Zero-divisor graphs of multiplication modules, Honam Math. J. 34 (2012), no. 4, 571-584.
[9] S. C. Lee and R. Varmazyar, Chromatic number of the zero-divisor graphs over modules, Commun. Korean Math. Soc. 34 (2019), No. 2, 391-399
[10] S. B. Mulay,Cycles and symmetries of zero-divisors, Comm. Algebra, 30(7)(2002), 3533-3558.
[11] B. S. Reddy, R. S. Jain, and N. Laxmikanth, Vertex and edge connectivity of the zero-divisor graph $\Gamma\left(Z_{n}\right)$, arXiv: $1807.02703 \mathrm{v} 1,2018$.
[12] P. F. Smith, Some remarks on multiplication module, Arch. Math.50(1988),223-235.
[13] D. Weber,Various Topics on Graphical Structures Placed on Commutative Rings, PhD dissertation, The University of Tennessee, 2017.

